3.584 \(\int \frac{\tan ^{\frac{5}{2}}(c+d x)}{a+b \tan (c+d x)} \, dx\)

Optimal. Leaf size=250 \[ -\frac{2 a^{5/2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{b^{3/2} d \left (a^2+b^2\right )}+\frac{(a+b) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} d \left (a^2+b^2\right )}-\frac{(a+b) \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{\sqrt{2} d \left (a^2+b^2\right )}-\frac{(a-b) \log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}+\frac{(a-b) \log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}+\frac{2 \sqrt{\tan (c+d x)}}{b d} \]

[Out]

((a + b)*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) - ((a + b)*ArcTan[1 + Sqrt[2]*Sqrt[Ta
n[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) - (2*a^(5/2)*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/(b^(3/2)*(a^2
 + b^2)*d) - ((a - b)*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) + ((a - b)
*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) + (2*Sqrt[Tan[c + d*x]])/(b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.418877, antiderivative size = 250, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 12, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.522, Rules used = {3566, 3653, 3534, 1168, 1162, 617, 204, 1165, 628, 3634, 63, 205} \[ -\frac{2 a^{5/2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{b^{3/2} d \left (a^2+b^2\right )}+\frac{(a+b) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} d \left (a^2+b^2\right )}-\frac{(a+b) \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{\sqrt{2} d \left (a^2+b^2\right )}-\frac{(a-b) \log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}+\frac{(a-b) \log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}+\frac{2 \sqrt{\tan (c+d x)}}{b d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^(5/2)/(a + b*Tan[c + d*x]),x]

[Out]

((a + b)*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) - ((a + b)*ArcTan[1 + Sqrt[2]*Sqrt[Ta
n[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) - (2*a^(5/2)*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/(b^(3/2)*(a^2
 + b^2)*d) - ((a - b)*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) + ((a - b)
*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) + (2*Sqrt[Tan[c + d*x]])/(b*d)

Rule 3566

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(b^2*(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1))/(d*f*(m + n - 1)), x] + Dist[1/(d*(m + n -
1)), Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^n*Simp[a^3*d*(m + n - 1) - b^2*(b*c*(m - 2) + a*d*(
1 + n)) + b*d*(m + n - 1)*(3*a^2 - b^2)*Tan[e + f*x] - b^2*(b*c*(m - 2) - a*d*(3*m + 2*n - 4))*Tan[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
&& IntegerQ[2*m] && GtQ[m, 2] && (GeQ[n, -1] || IntegerQ[m]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m] || (EqQ[c, 0]
&& NeQ[a, 0])))

Rule 3653

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[((c + d*Tan[e + f*x])^n*(1 + Tan[e + f*x]^2))/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\tan ^{\frac{5}{2}}(c+d x)}{a+b \tan (c+d x)} \, dx &=\frac{2 \sqrt{\tan (c+d x)}}{b d}+\frac{2 \int \frac{-\frac{a}{2}-\frac{1}{2} b \tan (c+d x)-\frac{1}{2} a \tan ^2(c+d x)}{\sqrt{\tan (c+d x)} (a+b \tan (c+d x))} \, dx}{b}\\ &=\frac{2 \sqrt{\tan (c+d x)}}{b d}+\frac{2 \int \frac{-\frac{b^2}{2}-\frac{1}{2} a b \tan (c+d x)}{\sqrt{\tan (c+d x)}} \, dx}{b \left (a^2+b^2\right )}-\frac{a^3 \int \frac{1+\tan ^2(c+d x)}{\sqrt{\tan (c+d x)} (a+b \tan (c+d x))} \, dx}{b \left (a^2+b^2\right )}\\ &=\frac{2 \sqrt{\tan (c+d x)}}{b d}+\frac{4 \operatorname{Subst}\left (\int \frac{-\frac{b^2}{2}-\frac{1}{2} a b x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{b \left (a^2+b^2\right ) d}-\frac{a^3 \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} (a+b x)} \, dx,x,\tan (c+d x)\right )}{b \left (a^2+b^2\right ) d}\\ &=\frac{2 \sqrt{\tan (c+d x)}}{b d}+\frac{(a-b) \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{\left (a^2+b^2\right ) d}-\frac{\left (2 a^3\right ) \operatorname{Subst}\left (\int \frac{1}{a+b x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{b \left (a^2+b^2\right ) d}-\frac{(a+b) \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{\left (a^2+b^2\right ) d}\\ &=-\frac{2 a^{5/2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{b^{3/2} \left (a^2+b^2\right ) d}+\frac{2 \sqrt{\tan (c+d x)}}{b d}-\frac{(a-b) \operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}-\frac{(a-b) \operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}-\frac{(a+b) \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}-\frac{(a+b) \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}\\ &=-\frac{2 a^{5/2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{b^{3/2} \left (a^2+b^2\right ) d}-\frac{(a-b) \log \left (1-\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}+\frac{(a-b) \log \left (1+\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}+\frac{2 \sqrt{\tan (c+d x)}}{b d}-\frac{(a+b) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}+\frac{(a+b) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}\\ &=\frac{(a+b) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}-\frac{(a+b) \tan ^{-1}\left (1+\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}-\frac{2 a^{5/2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{b^{3/2} \left (a^2+b^2\right ) d}-\frac{(a-b) \log \left (1-\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}+\frac{(a-b) \log \left (1+\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}+\frac{2 \sqrt{\tan (c+d x)}}{b d}\\ \end{align*}

Mathematica [C]  time = 0.173734, size = 155, normalized size = 0.62 \[ \frac{-2 a^{5/2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )+2 a^2 \sqrt{b} \sqrt{\tan (c+d x)}+\sqrt [4]{-1} b^{3/2} (b-i a) \tan ^{-1}\left ((-1)^{3/4} \sqrt{\tan (c+d x)}\right )+\sqrt [4]{-1} b^{3/2} (b+i a) \tanh ^{-1}\left ((-1)^{3/4} \sqrt{\tan (c+d x)}\right )+2 b^{5/2} \sqrt{\tan (c+d x)}}{b^{3/2} d \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^(5/2)/(a + b*Tan[c + d*x]),x]

[Out]

((-1)^(1/4)*b^(3/2)*((-I)*a + b)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]] - 2*a^(5/2)*ArcTan[(Sqrt[b]*Sqrt[Tan[c
+ d*x]])/Sqrt[a]] + (-1)^(1/4)*b^(3/2)*(I*a + b)*ArcTanh[(-1)^(3/4)*Sqrt[Tan[c + d*x]]] + 2*a^2*Sqrt[b]*Sqrt[T
an[c + d*x]] + 2*b^(5/2)*Sqrt[Tan[c + d*x]])/(b^(3/2)*(a^2 + b^2)*d)

________________________________________________________________________________________

Maple [A]  time = 0.026, size = 317, normalized size = 1.3 \begin{align*} 2\,{\frac{\sqrt{\tan \left ( dx+c \right ) }}{bd}}-2\,{\frac{{a}^{3}}{bd \left ({a}^{2}+{b}^{2} \right ) \sqrt{ab}}\arctan \left ({\frac{\sqrt{\tan \left ( dx+c \right ) }b}{\sqrt{ab}}} \right ) }-{\frac{b\sqrt{2}}{2\,d \left ({a}^{2}+{b}^{2} \right ) }\arctan \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }-{\frac{b\sqrt{2}}{2\,d \left ({a}^{2}+{b}^{2} \right ) }\arctan \left ( -1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }-{\frac{b\sqrt{2}}{4\,d \left ({a}^{2}+{b}^{2} \right ) }\ln \left ({ \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) \left ( 1-\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) ^{-1}} \right ) }-{\frac{a\sqrt{2}}{4\,d \left ({a}^{2}+{b}^{2} \right ) }\ln \left ({ \left ( 1-\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) ^{-1}} \right ) }-{\frac{a\sqrt{2}}{2\,d \left ({a}^{2}+{b}^{2} \right ) }\arctan \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }-{\frac{a\sqrt{2}}{2\,d \left ({a}^{2}+{b}^{2} \right ) }\arctan \left ( -1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(5/2)/(a+b*tan(d*x+c)),x)

[Out]

2*tan(d*x+c)^(1/2)/b/d-2/d/b*a^3/(a^2+b^2)/(a*b)^(1/2)*arctan(tan(d*x+c)^(1/2)*b/(a*b)^(1/2))-1/2/d/(a^2+b^2)*
b*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))-1/2/d/(a^2+b^2)*b*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))-1/4
/d/(a^2+b^2)*b*2^(1/2)*ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))-1/4
/d/(a^2+b^2)*a*2^(1/2)*ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))-1/2
/d/(a^2+b^2)*a*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))-1/2/d/(a^2+b^2)*a*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+
c)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(5/2)/(a+b*tan(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 101.077, size = 15540, normalized size = 62.16 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(5/2)/(a+b*tan(d*x+c)),x, algorithm="fricas")

[Out]

[1/4*(4*sqrt(2)*(a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7)*d^5*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 +
 a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8
 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4)*arctan(-((a^8 + 2*a^
6*b^2 - 2*a^2*b^6 - b^8)*d^4*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4
))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - sqrt(2)*((a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9)*d^7*sqrt
((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4
)*d^4)) - (a^7 + 3*a^5*b^2 + 3*a^3*b^4 + a*b^6)*d^5*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4
 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^
2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(((a^6 - a^4*b^2 - a^2*b^4 + b^6)*d^2*sqrt(1/((a^4 + 2*a^2*b^
2 + b^4)*d^4))*cos(d*x + c) + sqrt(2)*((a^7 - a^5*b^2 - a^3*b^4 + a*b^6)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d
^4))*cos(d*x + c) - (a^4*b - 2*a^2*b^3 + b^5)*d*cos(d*x + c))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b
^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c)
)*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (a^4 - 2*a^2*b^2 + b^4)*sin(d*x + c))/cos(d*x + c))*(1/((a^4 + 2*a
^2*b^2 + b^4)*d^4))^(3/4) - sqrt(2)*((a^10*b + 3*a^8*b^3 + 2*a^6*b^5 - 2*a^4*b^7 - 3*a^2*b^9 - b^11)*d^7*sqrt(
(a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)
*d^4)) - (a^9 + 2*a^7*b^2 - 2*a^3*b^6 - a*b^8)*d^5*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4
+ 4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2
*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^
(3/4))/(a^4 - 2*a^2*b^2 + b^4)) + 4*sqrt(2)*(a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7)*d^5*sqrt((a^4 + 2*a^2*b^2 +
b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt((
a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)
)^(3/4)*arctan(((a^8 + 2*a^6*b^2 - 2*a^2*b^6 - b^8)*d^4*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4
*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + sqrt(2)*((a^8*b + 4*a^6*b^3 + 6*a^4*b^5
+ 4*a^2*b^7 + b^9)*d^7*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqr
t(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - (a^7 + 3*a^5*b^2 + 3*a^3*b^4 + a*b^6)*d^5*sqrt((a^4 - 2*a^2*b^2 + b^4)/((
a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b
^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(((a^6 - a^4*b^2 - a^2*b^4 + b^6)*
d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - sqrt(2)*((a^7 - a^5*b^2 - a^3*b^4 + a*b^6)*d^3*sqrt(1
/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - (a^4*b - 2*a^2*b^3 + b^5)*d*cos(d*x + c))*sqrt((a^4 + 2*a^2*b^2
 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqr
t(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (a^4 - 2*a^2*b^2 + b^4)*sin(d*x + c))/c
os(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4) + sqrt(2)*((a^10*b + 3*a^8*b^3 + 2*a^6*b^5 - 2*a^4*b^7 -
3*a^2*b^9 - b^11)*d^7*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt
(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - (a^9 + 2*a^7*b^2 - 2*a^3*b^6 - a*b^8)*d^5*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a
^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^
5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^
4 + 2*a^2*b^2 + b^4)*d^4))^(3/4))/(a^4 - 2*a^2*b^2 + b^4)) + 2*a^2*sqrt(-a/b)*log(-(6*a*b*cos(d*x + c)*sin(d*x
 + c) - (a^2 - b^2)*cos(d*x + c)^2 - b^2 - 4*(a*b*cos(d*x + c)^2 - b^2*cos(d*x + c)*sin(d*x + c))*sqrt(-a/b)*s
qrt(sin(d*x + c)/cos(d*x + c)))/(2*a*b*cos(d*x + c)*sin(d*x + c) + (a^2 - b^2)*cos(d*x + c)^2 + b^2)) - sqrt(2
)*(2*(a^3*b^2 + a*b^4)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - (a^2*b + b^3)*d)*sqrt((a^4 + 2*a^2*b^2 + b^
4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*(1/((a^4
 + 2*a^2*b^2 + b^4)*d^4))^(1/4)*log(((a^6 - a^4*b^2 - a^2*b^4 + b^6)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))
*cos(d*x + c) + sqrt(2)*((a^7 - a^5*b^2 - a^3*b^4 + a*b^6)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x +
 c) - (a^4*b - 2*a^2*b^3 + b^5)*d*cos(d*x + c))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^
2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2
*a^2*b^2 + b^4)*d^4))^(1/4) + (a^4 - 2*a^2*b^2 + b^4)*sin(d*x + c))/cos(d*x + c)) + sqrt(2)*(2*(a^3*b^2 + a*b^
4)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - (a^2*b + b^3)*d)*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3
*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*(1/((a^4 + 2*a^2*b^2 + b^4)*
d^4))^(1/4)*log(((a^6 - a^4*b^2 - a^2*b^4 + b^6)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - sqrt
(2)*((a^7 - a^5*b^2 - a^3*b^4 + a*b^6)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - (a^4*b - 2*a^2
*b^3 + b^5)*d*cos(d*x + c))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a
^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)
)^(1/4) + (a^4 - 2*a^2*b^2 + b^4)*sin(d*x + c))/cos(d*x + c)) + 8*(a^2 + b^2)*sqrt(sin(d*x + c)/cos(d*x + c)))
/((a^2*b + b^3)*d), 1/4*(4*sqrt(2)*(a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7)*d^5*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(
a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt((a^4 - 2*a
^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4)*a
rctan(-((a^8 + 2*a^6*b^2 - 2*a^2*b^6 - b^8)*d^4*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4
*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - sqrt(2)*((a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*
b^7 + b^9)*d^7*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^
4 + 2*a^2*b^2 + b^4)*d^4)) - (a^7 + 3*a^5*b^2 + 3*a^3*b^4 + a*b^6)*d^5*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*
a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*
sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(((a^6 - a^4*b^2 - a^2*b^4 + b^6)*d^2*sqrt
(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + sqrt(2)*((a^7 - a^5*b^2 - a^3*b^4 + a*b^6)*d^3*sqrt(1/((a^4 +
 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - (a^4*b - 2*a^2*b^3 + b^5)*d*cos(d*x + c))*sqrt((a^4 + 2*a^2*b^2 + b^4 +
 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*
x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (a^4 - 2*a^2*b^2 + b^4)*sin(d*x + c))/cos(d*x +
 c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4) - sqrt(2)*((a^10*b + 3*a^8*b^3 + 2*a^6*b^5 - 2*a^4*b^7 - 3*a^2*b^
9 - b^11)*d^7*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4
 + 2*a^2*b^2 + b^4)*d^4)) - (a^9 + 2*a^7*b^2 - 2*a^3*b^6 - a*b^8)*d^5*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a
^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*s
qrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^
2*b^2 + b^4)*d^4))^(3/4))/(a^4 - 2*a^2*b^2 + b^4)) + 4*sqrt(2)*(a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7)*d^5*sqrt(
(a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2
*b^2 + b^4))*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*(1/((a^4 + 2*
a^2*b^2 + b^4)*d^4))^(3/4)*arctan(((a^8 + 2*a^6*b^2 - 2*a^2*b^6 - b^8)*d^4*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8
+ 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + sqrt(2)*((a^8*b + 4*a
^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9)*d^7*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b
^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - (a^7 + 3*a^5*b^2 + 3*a^3*b^4 + a*b^6)*d^5*sqrt((a^4 -
2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*
b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(((a^6 - a^4*b^
2 - a^2*b^4 + b^6)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - sqrt(2)*((a^7 - a^5*b^2 - a^3*b^4
+ a*b^6)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - (a^4*b - 2*a^2*b^3 + b^5)*d*cos(d*x + c))*sq
rt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*
a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (a^4 - 2*a^2*b^2 + b
^4)*sin(d*x + c))/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4) + sqrt(2)*((a^10*b + 3*a^8*b^3 + 2*a^6
*b^5 - 2*a^4*b^7 - 3*a^2*b^9 - b^11)*d^7*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^
6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - (a^9 + 2*a^7*b^2 - 2*a^3*b^6 - a*b^8)*d^5*sqrt((a^4 - 2
*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b
 + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/co
s(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4))/(a^4 - 2*a^2*b^2 + b^4)) - 8*a^2*sqrt(a/b)*arctan(b*sqrt(
a/b)*sqrt(sin(d*x + c)/cos(d*x + c))/a) - sqrt(2)*(2*(a^3*b^2 + a*b^4)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4
)) - (a^2*b + b^3)*d)*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2
 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4)*log(((a^6 - a^4*b^2 - a^2*b^4
+ b^6)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + sqrt(2)*((a^7 - a^5*b^2 - a^3*b^4 + a*b^6)*d^3
*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - (a^4*b - 2*a^2*b^3 + b^5)*d*cos(d*x + c))*sqrt((a^4 + 2*
a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^
4))*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (a^4 - 2*a^2*b^2 + b^4)*sin(d*x
+ c))/cos(d*x + c)) + sqrt(2)*(2*(a^3*b^2 + a*b^4)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - (a^2*b + b^3)*d
)*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4
- 2*a^2*b^2 + b^4))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4)*log(((a^6 - a^4*b^2 - a^2*b^4 + b^6)*d^2*sqrt(1/((
a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - sqrt(2)*((a^7 - a^5*b^2 - a^3*b^4 + a*b^6)*d^3*sqrt(1/((a^4 + 2*a^
2*b^2 + b^4)*d^4))*cos(d*x + c) - (a^4*b - 2*a^2*b^3 + b^5)*d*cos(d*x + c))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a
^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c
)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (a^4 - 2*a^2*b^2 + b^4)*sin(d*x + c))/cos(d*x + c))
+ 8*(a^2 + b^2)*sqrt(sin(d*x + c)/cos(d*x + c)))/((a^2*b + b^3)*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(5/2)/(a+b*tan(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(5/2)/(a+b*tan(d*x+c)),x, algorithm="giac")

[Out]

Timed out